

Three-dimensional Modeling and Stress Calibration for a Complex Mining Geometry

Thomas Wettainen

ITASCA

Gonzalo Corral

ITASCA s.a. Geomecánica e Hidrogeología

Jonny Sjöberg ITASCA Consultants AB

The LKAB Mining Company

- Iron ore producer
- Two underground mines in operation
 - Kiruna
 - 1 orebody (Kiirunavaara)
 - Annual production ≈ 29 Mton
 - Malmberget
 - 10 actively mined orebodies
 - Annual production \approx 15 Mton
- Mining only with sublevel caving method

The LKAB Malmberget Mine

- Many orebodies of varying size and shape (8 km² area)
- Hard, strong rock mixed with weak, soft rock + some largescale structures
- Mining currently at 400-900 m depth

Objective & Scope

- Study stress situation for potential continued mining towards greater depths
- Stress calibration against stress measurements using numerical modeling
- Use of calibrated model:
 - Study stresses at existing infrastructure
 - Study stresses at potential future haulage level locations
 - Input to local models

Model setup – orebodies

Rock materials

orebodies

orebodies + biotite-zone

Rock stress data

Stress calibration

- Assumptions:
 - Primary stress (before mining) is horizontally and vertically oriented, thus: $\tau_{xz} = 0$

$$\tau_{yz} = 0$$

- Linear-elastic
- Vertical stress is primarily gravitational
- Each stress component can be described by:

$$\sigma_{ij}^{total} = \sigma_{ij}^{constant} + \sigma_{ij}^{gradient} \cdot z + \sigma_{ij}^{gravitation}$$

- Unit stresses + superposition, two solving methods:
 - Excel Solver
 - Genetic Algorithms

McKinnon, S. D. 2001. Analysis of stress measurements using a numerical model methodology. *Int. J. Rock Mech. Min. Sci.*, **38**, pp. 699-709.

Stress calibration

Unit stresses (7 different cases)

gravitation ($g = 9.81 \text{ m/s}^2$)

Stress relation for each component exemplified for σ_{x}

$$\sigma_x^{calc} = A\sigma_x^{\sigma_x^{constant}} + B\sigma_x^{\sigma_y^{constant}} + C\sigma_x^{\tau_{xy}^{constant}} + D\sigma_x^{\sigma_x^{gradient}} + E\sigma_x^{\sigma_y^{gradient}} + F\sigma_x^{\tau_{xy}^{gradient}} + G\sigma_x^{gravitation}$$

ITASCA

Results

$$\sigma_x^{calc} = D\sigma_x^{\sigma_x^{gradient}} + E\sigma_x^{\sigma_y^{gradient}} + F\sigma_x^{\tau_{xy}^{gradient}} + G\sigma_x^{gravitation}$$

Case	Description	D	E	F	G	Mean error
Solver case 1	5 points	0.02909	0.02665	-0.01169	-1.0	20.9 %
Solver case 2	5 points Biotite	0.02995	0.02733	-0.01217	-1.0	33.5 %
GA case 1	5 points Constraints	0.02204	0.01984	-0.01132	-1.0	21.7 %
GA case 2	5 points Biotite Constraints	0.02300	0.02020	-0.01212	-1.0	23.1 %
σ _H = 0.0396 z						
σ _h = 0.0161 z						
$\sigma_v = \rho g h / 10^6 (\sim 0.0265 z)$						
Orientation of $\sigma_{\rm H} = 132^{\circ}$						

ITASCA

Applications

Conclusions

- Boundary stresses were successfully determined:
 - Two alternative methods were used
 - The Genetic Algorithms method is more general and can find the global error minimum
 - The Solver method resulted in a lower mean error (additional constraints only with GA method)
- The resulting stress state is in fair agreement with previous calibration and earlier assumptions of the stress field
- The derived stress equations represent an average stress state for the entire model; local variations in the rock mass are likely
- Calibrated model successfully used for assessment of infrastructure location, overall stress evaluation, input to local models

The work presented in this paper was funded by LKAB.

The approval to publish and present the work is greatly appreciated.

