

The Spanish **Mining Council** is organising the 2018 International Symposium in Slope Stability in Open Pit Mining and Civil Engineering at the XIV International Congress for Energy and Resource Mining in Seville.

Analysis of Large-Scale Pit Slope Stability — The Aitik Mine Revisited

Jonny Sjöberg Diego Lope Álvarez Patricio Gómez Per-Ivar Marklund Sara Suikki Itasca Consultants AB SKB (previously Itasca) Itasca S.A. (retired, Boliden) Itasca summer intern

Things we all know...

- Design of overall slopes is important for open pits of all scales and further underlined by the push towards larger, and deeper pits
- Evolution of design tools:
 - From simple empirical and limit equilibrium methods to sophisticated numerical computer modelling
 - Rapid increase in computer capacity, but also an increased understanding of the behaviour of large-scale slopes
 - Still severely data- and knowledge constrained...
- Illustration of design development and current state-of-the-art using the Aitik open pit mine as a case in point.

The Aitik Mine

- Owned and operated by Boliden (from the start)
- Mineralization discovered in the 1930s
- Mining commenced 1968 Boliden's first open pit
- Currently the largest metal open pit mine in Europe

CIVIL • MANUFACTURING • MINING • OIL & GAS • POWER GENERATION

Today – 40 Mtpa (ore) 3000 x 1000 m, 420 m depth, main pit + satellite pit

Main pit hangingwall

CIVIL • MANUFACTURING • MINING • OIL & GAS • POWER GENERATION

Main pit footwall

CIVIL • MANUFACTURING • MINING • OIL & GAS • POWER GENERATION

Geological setting

SCA

Consultants AB

Geology & Geomechanics

- Generally strong, metamorphic rock, with some weaker units (biotite/muscovite schist)
- Medium to good rock quality; poor quality in schist units

Consultants AE

Structural Characteristics

- Well-developed foliation

 + cross-joints and
 vertical jointing
- Hangingwall contact = old thrust fault with clay
- No other large-scale structures identified

The early stages...

- First major design study in 1976 with follow-up in 1985
- Bench design based on structural control; Double-benching (2 x 15 m) with offset chosen to match foliation dip
- Catch bench width based on original Ritchie criterion – 11 m for 90% of the cases
- Overall slopes not assessed

Consultants AB

Blasting can make things better...

- Problems:
 - Vertical blast damage
 - Quality control / hole deviation
 - Local crest failures & bench widths not attained
- Solutions:
 - Blast damage model (PPV)More buffer rows
 - Pre-split with decoupled charges

Large-scale slope stability at Aitik...

• Issues for hard rock slopes:

 No failure observations = no calibration of properties possible (except that failure should not develop for current mining geometries)
 Failure may be rapid and uncontrollable (brittle rock)

- Remedies:
 - Develop methodology for modeling and parameter assessment and apply to other slopes *with* failure
 - Design methodology must be conservative => use residual strength parameters

Large-scale and 2D – at Aitik...

- Project on large-scale slope stability in hard rocks (1990s) & revision of overall slope angles:
 - Empirical case study database
 - Updated geomechanical model
 - 2D numerical modeling continuum models, rock mass strength + residual strength parameters + ubiquituos joints (foliation)
- Results
 - Stability assessment to 500 m depth
 - ✤Increase of interrramp and overall angles (+5°) with drainage program
 - Additional modeling for deeper (750 m) pit => additional drainage

- New strategic plan and deeper mining (2015-2016)!
- New analyses:
 - Numerical modeling, Factor-of-Safety calculations, 2D (& 3D)
 - Perfectly-plastic material model (no softening; peak strength = residual strength); Hoek-Brown material model
 - Rock mass strength values estimated empirically using characterization (GSI) and Hoek-Brown failure criterion
 - Experiences and practices from Itasca analysis of large pit slope used to supplement and refine estimates
 - Acceptance criterion: FoS for the Overall Slope Angle > 1.2

- Design values for GSI and UCS:
 - ✤ mean 0.5 std.dev
 - Corresponds to 30-35 percentile
 - Accounts for heterogeneity in large-scale rock masses, and the ability for the rock to fail through the weaker components (based on experience and empirical evidence)
- Variation of D (disturbance factor) with depth
 - ✤ D=1.0 everywhere proven too conservative
 - Blast damage highest close to slope face
 - Stress relief close to slope face
 - Possible stress damage at depth

- Groundwater conditions:
 - Partly depressurized in upper portion; face seepage in lower portion
 - Scenario 1: Depressurized 100 m horizontal distance (upper 2/3 of slope height)
 - Scenario 2: Depressurized 150 m horizontal distance (upper 2/3 of slope height).

CIVIL • MANUFACTURING • MINING • OIL & GAS • POWER GENERATION

Results & design recommendations

HW overall slope angle [°]	Pit bottom [level]	Depressurization [m]
48	800 m	100 (2/3 H)
52	800 m	150 (2/3 H)
50	850 m 👘	150 (<mark>2</mark> /3 H)
54	850 m	150 (H)
54 *	600 m	100 (2/3 H)
54 *	600 m	100 (2/3 H)
FW overall slope angle [°]	Pit bottom [level]	Depressurization [m]
47	800 m	100 (2/3 H)
45	850 m	100 (2/3 H)
47	850 m	150 (2/3 H)
47*	600 m	100 (2/3 H)

* Middle-southern portion (lower final slope heights)

2D or 3D? Or both?

- How conservative are 2D-analyses?
- 3D-check for Aitik geometry:
 Simplified slope, undrained conditions
 FoS (3D) = 2.0 ⇔ FoS (2D) = 1.2 for the same case
- Geometry matters (a lot)!

Aitik findings....

- Increased reliability in bench slope design
 - Presplit blasting on footwall (inclined, 70°) and for modified ramp design
 - Increased safety of benches; maintained catch bench design
 - Revised acceptance criteria
- Improved interramp slope design
 - Increase on footwall interramp slope angle from improved blasting
 - Implemented allowed maximum interramp height = 200 m (6–7 double benches)
 - Rock mass stability => steeper interramp angles allowed
- Overall pit slope design
 - Verified overall pit slope angles: 47° for footwall; 54° for hangingwall, for a maximum pit depth of 850 m
 - Depressurized conditions required (150 m horizontal distance)

The future...

- Analytical methods are standard for bench-scale design
- Numerical modeling remains the preferred tool for large-scale stability assessment
 - 3D models, DFN input, coupled (water-stress) modeling, etc. are all increasingly used
 - Computational speed less of an issue...cloud computing emerging!?
- Advances in data collection not on par with advances in modeling capabilities
 - Are we using the right tools? Volumetric coverage?
 - Is there "unconventional" data to be used? As "proxies" for rock mechancis parameters?

The future...

- Validation efforts required:
 - Partial validation is also of value!

Acceptance criteria for validation

The funding by Boliden is gratefully acknowledged

Special thanks to Anton Bergman, Jansiri Malmgren & Mats Larsson for review of this paper