

Input to Orepass Design — A Numerical Modeling Study

Jonny Sjöberg

Axel Bolin

Abel Sánchez Juncal

Thomas Wettainen

Diego Mas Ivars

Fredrik Perman

Sublevel caving & orepasses

Fall-outs in orepasses

Orepass 216

Commissioned april 2011

Closed for renovation

Orepass 225

Commissioned Oct 2012 Permanent closure April 2013

Spalling failure in ventilation shaft

Problems & Opportunities

- Orepass design guidelines required for potentially continued mining at depth
- Observations \rightarrow validation \rightarrow design:
 - Stress-induced failure
 - Validate strength and stress values
 - Investigate influence of nearby large-scale structures
 - Design options (location, orientation, shape)

Objective & Scope

- Validate rock strength and stress state through comparison with observed fallouts in orepasses and shafts
- Determine the optimal orientation and location of orepasses for future mining
- Effects of wear only accounted for implicitly by simulating a change in orepass geometry

The LKAB Mining Company

- Iron ore producer
- Two underground mines in operation
 - Kiruna
 - 1 orebody (Kiirunavaara)
 - Annual production ≈ 29 Mton
 - Malmberget
 - 10 actively mined orebodies
 - Annual production \approx 16 Mton
- Mining only with sublevel caving method

ITASCA

The LKAB Malmberget Mine

- Many orebodies of varying size and shape (8 km² area)
- Mining currently at 550–850 m depth
- Mineralization to 1300 m depth (?)
- Hard, strong rock mixed with weak, soft rock + some largescale structures
- Several non-daylighting orebodies

The LKAB Malmberget Mine

- Many orebodies of varying size and shape (8 km² area)
- Mining currently at 550–850 m depth
- Mineralization to 1300 m depth (?)
- Hard, strong rock mixed with weak, soft rock + some largescale structures
- Several non-daylighting orebodies

ITASCA Problem Description – Ore Pass Fall-Out

ITASCA

Modeling Approach

- Local model:
 - 2D-section perpendicular to orepass axis
 - Boundary stresses from mine-scale model
- Mine-scale model
 - 3D model, calibrated
 against stress measurements

Modeling Approach

- Analysis of two levels in each orepass:
 - Upper portion (no fall-outs)
 - Lower portion (extensive fall-outs)
- Parametric studies:
 - Material models

- Strength values
- Location of large-scale structures

Geometry and Modeling Approach

Brittle Material Model; CWFS

Cohesion-Weakening Friction-Strengthening

Material model for brittle failure

In other words:

"c and then tan fi"

not "c plus tan fi"

FLAC (2D) model

- Model section perpendicular to orepass axis
- High resolution (10 cm zone size)

Model with structures

Larger model

ITASCA

Same resolution

Material Properties

- Parameter values estimated from laboratory tests, logging & experience
- Properties defined for dominant rocks:
 - RL = Red leptite
 - GL = Grey leptite
 - BI = Biotite
- Properties weighted by rock type:

 $FLAC_p = RL(\%) * RL_p + GL(\%) * GL_p + BI(\%) * BI_p$

Representative Results

Orepass – Yielding

Mohr-Coulomb

- Perfectly plastic
- 50% RL, 50% GL

CWFS

ITASCA

- Cohesion weakening, frictional strengthening
- 50% RL, 50% GL

Orepass – Yielding

Comparison with fallouts

- CWFS
- 100% GL

Influence of nearby structures

- CWFS, 100% GL
- Structure simulated as weak zone, *c*=0, φ=20° (Mohr-Coulomb)

Ventilation Shaft

- CWFS
 - Fine-tuning of rock mass strength parameters

Validated Strengths (CWFS)

Rock mass	<i>c</i> [MPa]		φ[°]		Plastic strain limits [%]		In	σ_{tm}
	Initial	Residual	Initial	Residual	eps_Coh	eps_Fric	I Beps	[MPa]
≈ 60% RL ≈ 40 % GL	55.0	6.2	0	46.2	0.2	0.4	1	0.95

Conclusions

- Brittle material model (CWFS) required to replicated notch-shaped fallouts & spalling failure
- Strength values representative for stress-induced orepass failures
- Large-scale structures influence orepass stability – but only when in close proximity to the boundary (< 10 m).

Design Considerations

Future Orepass Design

- Analysis of different orepass locations and orientations for potentially deeper mining
- Application the Alliansen-Printzsköld orebody and the Fabian orebody (two major future production areas)
- CWFS material model
- Orepass "groove" (wear effect)

Analysed Cases

Stress at Orepass Location

Middle location

East location

East location & lower strength

Progressive Failure

ITASCA

Design Recommendations (I)

- Influencing factors:
 - Rock mass strength
 - Geographical location (stress state)
 - Orepass geometry
 - Orepass orientation

Decreasing importance

- East location (for Alliansen-Printzsköld) is more advantageous)
- Parallel orientation is (slightly) preferable

Design Recommendations (II)

- De-stressing slot not recommended; deconfinement leads to increased rock mass damage near the orepass
- Progressive geometrical changes due to wear may lead to more extensive spalling; must be considered in future work
- 3D stress model of the orepass should be considered

SLKAB

The funding by LKAB is gratefully acknowledged Special thanks to: Jimmy Töyrä (LKAB)