

FLAC3D for New Users

October 2021

Panelists

Jim Hazzard Software Manager

Zhāo Chéng FLAC3D Product Manager

David DeGagné Senior Engineer, Technical Marketing

FLAC3D for New Users

- What is *FLAC3D*?
- How it works
- Features
- Demo
- What's next?

What is *FLAC3D*?

- Continuum numerical modeling software for geotechnical analyses of soil, rock, groundwater, and ground support
- Used in civil, mining, geotechnical and petroleum engineering applications

Analyses include engineering design, factor of safety prediction, research and testing, and back-analysis
of failure

Applications

- Deformation and stability analysis of:
 - Slopes (embankments, open pit mines, rock and soil)
 - Tunnels (transportation tunnels, caverns, mining stopes)
 - Surface excavations (foundations, footings)
- Analysis of effectiveness of ground support
 - Cables, soil nails, tiebacks, piles
 - Liners, shotcrete
 - Geogrids, geotextiles
- Dynamic analysis
 - Earthquakes, liquefaction, rockbursts, microseismicity
- Faulted or jointed rock

FLAC3D for New Users

- What is *FLAC3D*?
- How it works
- Features
- Demo
- What's next?

How it works

FLAC3D uses an explicit, finite volume formulation

Finite volume formulation does not require a regular grid – unstructured meshes are possible

Explicit solution

 Explicit "time-marching" scheme models changing boundary conditions by propagating information across the model in a realistic manner

Explicit Solution Scheme

- Models physically unstable processes without numerical instability
- Explicit approach is good for:
 - Dynamics
 - Highly non-linear material behavior (e.g. strain softening)
- Large strain
- Severe instability (yield/failure over large area, total collapse)
- Explicit approach is less good for:
 - Elastic or near-elastic models

FLAC3D is (mostly) command driven

Why?

- Provides high level of flexibility and power without proliferation of buttons and menus
- Repeatability
- Easy to perform parameter studies
- Easy to add scripting

```
1 model restore "geometry"
 2 model large-strain off
 3 ; Constitutive Model and Properties
4 zone cmodel assign mohr-coulomb
5 zone property bulk 65000 shear 30000 density 2.0
 6 zone property cohesion 10 friction 34 tension 1.0
 7 ; Boundary Conditions
8 zone face apply velocity-normal 0 range group "West" or "East"
 9 zone face apply velocity-normal 0 range group "North" or "South"
10 zone face apply velocity-normal 0 range group "Bottom"
11 ; Initial Conditions
12 model gravity 9.81
13 zone initialize-stresses
14 ; Solve to initial equilibrium
15 model solve
16 model save "initial"
17 ; Excavate Tunnel
18 zone relax excavate range group "Space"
19 ; Solve to equilibrium after excavation
20 model solve
```


FLAC3D for New Users

- What is *FLAC3D*?
- How it works
- Features
- Demo
- What's next?

Model Building: Extrusion

Model Building: Building Blocks

Model Building: Geometric Surfaces

- Densify zones close to imported surfaces
- Name zones according to position relative to surfaces

Model Building: Geometric Surfaces

• Fit zones to an imported topographic surface

Mesh Import from Other Software

Model Manipulation

- Model pane allows for selecting volumes or surfaces and
 - Assigning names
 - Assigning constitutive models
 - Densifying zones (increase resolution)
 - Creating interfaces (faults/joints)
 - Creating structural elements (liners)

Loading, Excavation and monitoring

- Time-varying loads may be applied
- Complex staging of excavations possible
- Can view results as calculation progresses

Staged Excavation

Factor of Safety

Main Features: Fluid Flow

- Effective stress (water table)
- Steady-state flow
- Transient flow
- Partially saturated flow

 Couple fluid flow analysis to mechanical model (two-way coupling) as well as to dynamic and thermal analyses

Dam model with impounded water saturation contours shown

Main Features: Structural Elements

- Six forms of ground support:
 - Beam
 - Cable
 - Pile
 - Shell
 - Geogrid
 - Liner

- Can be joined to one another and/or the grid
- 2D structural elements (shells, geogrid, and liners) can be interactively defined using the Model Pane
- Structural element geometry can be imported from CAD software via DXF or STL files

Main Features: Dynamic Analysis

- Analyze earthquakes, seismicity, mine rockbursts, liquefaction, etc.
- Input acceleration, velocity or stress waves as boundary conditions
- Absorbing and free-field boundaries
- Can be used with structural elements and groundwater.

Main Features: Constitutive Models

- 26 mechanical and 9 creep models built-in
- Create your own constitutive model as a plug-in using C++
- Library of User Defined Models on the website https://www.itascacg.com/software/udm-library

- •Null
- •Elastic, Isotropic
- •Elastic, Transversely Isotropic
- •Elastic, Orthotropic
- Drucker-Prager
- •Mohr-Coulomb
- Ubiquitous-joint (UBJ)
- Strain Hardening/Softening
- •Bilinear Strain Hardening/Softening UBJ
- Double Yield
- Modified Cam-Clay
- •Hoek-Brown
- Modified Hoek-Brown
- •CYSoil
- Simplified CYSoil (CHSoil)
- •Caniso **NEW in 7**
- •Plastic Hardening (PH) **UPDATED** (small strain)
- Mohr-Coulomb Swelling
- Mohr-Coulomb Tension
- NorSand NEW in 7
- Soft-Soil NEW in 7
- P2PSand NEW in 7

Main Features: Scripting

- Both FISH (Flac-ISH) and Python are fully integrated in FLAC3D
- The ability to combine model-creation commands with scripting in Itasca software is tremendously powerful
 - Parameter studies
 - Automating model sequences
 - Modification of physics
- FISH is multi-threaded
- Python includes scientific, mathematical and UI modules

```
Edit ground_freezing.fis

1 program call 'freeze_zone'
2 ☐ fish operator ground_freezing(zone)
3 if zone.isgroup(zone,'frozen','state') then return 0
4 if zone.temp(zone) > 0.0 then return 0
5 freeze_zone(zone)
6 end
```


Other Features

- Interfaces (Joints and Faults)
 - Interfaces can shear and separate/close
- Discrete Fracture Network generation
- Thermal analysis
- Creep
- Large strain
- Coupling with PFC

PFC3D 7.00

©2021 Itasca Consulting Group, Inc.

Zone Displacement Magnitude

Cut Octant: on back

2.5000E-03

2.2500E-03

2.0000E-03

1.7500E-03

1.5000E-03

1.2500E-03

1.0000E-03

7.5000E-04

5.0000E-04

2.5000E-04

0.0000E+00

Ball displacement_mag

Balls (4769)

2.5000E-03

2.2500E-03

2.0000E-03

1.7500E-03

1.5000E-03

1.2500E-03

1.0000E-03

7.5000E-04

5.0000E-04

2.5000E-04

0.0000E+00

FLAC3D for New Users

- What is *FLAC3D*?
- How it works
- Features
- Demo
- What's next?

FLAC3D for New Users

- What is *FLAC3D*?
- How it works
- Features
- Demo
- What's next?

What's Next

- Cloud computing
- FLAC2D → 2D version of FLAC3D (coming 2022)
- Improved GUI more user-friendly
- Cluster version (parallel computing)
 - Linux
- And more!

Resources

- Online documentation: http://docs.itascacg.com/
- Examples: https://www.itascacg.com/software/support/examples
- Video tutorials: https://www.itascacg.com/learning/tutorials
- Download demo version: https://www.itascacg.com/contact-itasca/demo-downloads-request
- Spring training courses: Online for 2021. Details coming soon.

Thank You

- A survey regarding features you would like to see in FLAC3D will be sent out after this webinar
 - We appreciate your responses
- A recording of this webinar will be made available to all registrants shortly
- Questions?

